Ambient Air Toxics in Cook County IL and Lake County IN

Participants, scoping, conduct and product

November 5, 2002

George Bollweg, PhD

USEPA Reg. 5 Air and Radiation Div.

312-353-5598

bollweg.george@epa.gov

Outline

- 1. Terminology
- 2. Cumulative Risk Initiative (CRI) and CRI Cumulative Hazard Assessment: background, participants, scoping, conduct, finish
- 3. Assessment methods; results not yet public per agreement
- 4. Preliminary lessons learned
- 5. Summary

Terminology — project name changes

■ 1996-1999: overall 4-part project = Chicago Cumulative Risk Initiative (CCRI)

■ 2000: name changed to Cumulative Risk Initiative (CRI) for Cook County IL and Lake County IN

■ 2002: new name??

Terminology (ctd.)

Stakeholder - "An interested or affected party in an ongoing or contemplated project (usually involving a group or team planning the project, analyzing one or more problems, and making decisions for possible actions based on the interpretation of that analysis)."

(USEPA Framework for Cumulative Risk Assessment, 4/23/2002 draft)

Terminology (ctd.)

Participant - "one that participates"

[participate: to take part] (Webster's

Ninth New Collegiate Dictionary)

Cumulative Risk Initiative (CRI) background

- CRI resulted from 1995-1996 TSCA Petition to Administrator
- Petition focused on lack of cumulative effects consideration in siting and permitting of multiple incinerators in Cook (IL) and Lake (IN) counties
- Petition denied but USEPA felt issues were compelling, proposed broader project
- 1997 SPC Guidance on Cumulative Risk Planning-Scoping: CRI case study

Study Area

Map 2.1 Municipalities in Cook County, IL and Lake County, IN with Greater than 50,000 Population in 1990

Source: Based on information from U.S. Bureau of the Consus.

Petitioner participants (represented by Chicago Legal Clinic)

- People for Community Recovery
- Lake Michigan Federation
- Grand Calumet TaskForce
- Center for NeighborhoodTechnology
- Citizens for a BetterEnvironment
- Southeast Environmental Task Force

- South Cook CountyEnvironmental ActionCoalition
- Human ActionCommunity Organization
- South Suburban CitizensOpposed to Polluting OurEnvironment
- Lyons IncineratorOpponent Network
- Westside Alliance for a Safe Toxic-Free Environment

Governmental participants

- Illinois Environmental Protection Agency
- Indiana Department of Environmental Management
- Illinois and IndianaDepts. of Public Health
- City of Chicago
- Cook County
- E. Chicago, IN

USEPA offices:

- Pesticides, Prevention and Toxic Substances
- Planning, Economics and Innovation
- Air Quality Planning and Standards
- Civil Rights
- Research and Development
- Region 5
- Others initially!

Argonne National Laboratory (interagency agreement with USEPA)

Assessment participant process "phases"

- Early (scoping) 1996-9: Petitioners, OPPT, OEJ, OA, OGC, OAQPS, OPPE, OSWER, SAB, SPC/ORD, OW, OCR, R5, Argonne, others?
- Middle (conduct) 1999-2000: Petitioners, states, locals, OAQPS, OPEI, OCR, Argonne, R5
- Late (peer review/finish) 2001-2: external peer reviewers, Argonne, R5, others intermittently

CRI scoping

- Choose cumulative rather than comparative evaluation
- Exclusions: ecological assessment, non-Petitioner public, industry
- Settle on basic structure of study, use 1997
 SPC Guidance

CRI components

- Environmental Loadings Profile (multimedia pollution and emissions inventory)
- Petitioner workshops and meetings (planning, scoping)
- 3. Cumulative ["Hazard"] Assessment
- 4. Risk/hazard management response

CRI scoping – from risk to "hazard"

Ultimate interest in "hazard" rather than "risk":

- Petitioners wanted something relevant for entire study area, not one or two neighborhoods
- Forced by resource and information limitations
- Some negative experience with "risk" assessment

Assessment goals

- Better understand environmental conditions in Cook and Lake counties
- Improve stakeholder dialogue
- Develop cumulative assessment methods
- Inform program priorities and resource allocation decisions [use Assessment as prioritization tool, not a health evaluation]

Assessment – scoping

- "Early" participant process phase
- Initial focus: cumulative risk assessment
- Later focus: hazard assessment of outdoor "air toxics" (in part due to Loadings Profile results; whole study area, not just 1 or 2 neighborhoods; unhappy experience with local risk assessment)

Assessment – scoping (ctd.)

- Rely on already available, "off-the-shelf" information
- Focus on EPA-regulated sources
- Focus on children
- Don't try to link pollutant and disease information
- Some diseases excluded due to data inacessibility or gaps

Assessment – scoping (ctd.)

Other excluded topics:

- Human exposure assessment
- Indoor air
- Ingestion and dermal hazard
- Microbial agents
- Genetic susceptibilities
- Lifestyle hazards (e.g. obesity, tobacco, inactivity)
- "Social hazards" (e.g. poverty, lack of healthcare access, violence, "stress")

Assessment – scope

- Cumulative human inhalation hazard of USEPA-regulated outdoor air toxics in study area
- Use available, "off-the-shelf" data and information
- Focus on EPA-regulated sources
- Address children's focus indirectly with "overlays" of disease maps, pollution data

Mapped 1996 TRI data

Study area school locations

Assessment – conduct

- "Middle" participant process phase
- Initial Argonne chapter drafts (n=11)
- Technical Review Workgroup of "middle phase" participants reviewed Argonne drafts
- In-person and conference call reviews for comments on drafts
- Written and discussion comments processed and used by Argonne, R5 workgroup to prepare Assessment peer review draft

Assessment methods

Figure 1.2 Overview of Screening Assessment Process

Assessment results — general format

- Maps hazard "density" mapped in a geographic area or ranked by pollutant, source sector (point, area, mobile), industrial sector (e.g. primary metals, chemical refineries), some individual point sources
- Figures, pie charts, graphs, tables, etc.

Assessment – peer review

- "Late" participant process phase
- Peer review (PR) draft and charge submitted to external reviewers
- Obtain and discuss preliminary comments; R5-Argonne provide final written input to reviewers, obtain final written PR comments
- Argonne-R5 respond to PR comments, prepare comment-response document & final draft

Assessment – finish

- Develop communication materials (summaries, Q&A, fact sheets)
- Present final Assessment to Programs, R5 management, states, locals; agree on risk/hazard management step(s)
- Print Assessment and present to Petitioners, place on website

How did participants influence CRI scope and direction?

By defining analytic/deliberative parameters:

- 1. Petitioners identified cumulative assessment issue
- 2. Non-Petitioner public and industry excluded from process
- 3. Focus on hazard, not risk; "air toxics" inhalation; children's health
- 4. Assessment design: "off-the-shelf" information, inclusion of health information not "connected" with pollution; other excluded topics

How did participants influence CRI scope and direction? (ctd.)

Through participant technical review process:

- Much debate; e.g. Assessment objectives;
 CEP inclusion; age of data; toxicity issues;
 facility locations
- City of Chicago interest in airports led to reanalysis and remapping of tox-weighted emissions

How did participants influence CRI direction? (ctd.)

Through external peer review process:

Peer review of "community designed" projects: external reviewers didn't accept all scope decisions and design constraints (charge defect? Technical review/stakeholder-designed project mismatch?)

Some Preliminary Lessons Learned

Deliberative:

- Excluding stakeholders is risky
- Big project, big management needs
- Closure plans helpful?
- Peer review of "stakeholder designs"?

Analytic:

- Long scoping effort narrowed Assessment
- GIS mapping (quartiles; "false precision")
- Data: accuracy; age; gaps

One "take home message" summary:

- Long planning-scoping phase redirected Assessment from risk evaluation to prioritization tool
- Big projects → big technical and managerial needs
- Matching analysis with large deliberative group's study design: iterative and resource intensive
- "Combining" disparate data and information is difficult – could just presenting it suffice in some cases?